Homework 7, due 11/4

1. (a) Let $f, g: \Omega \to \mathbf{C}$ be holomorphic functions, and $\gamma: [0,1] \to \Omega$ a curve contractible to a point in Ω . Suppose that for all $t \in [0,1]$ we have $|g(\gamma(t))| < |f(\gamma(t))|$. Prove that

$$\sum_{a \in \Omega} n(\gamma, a) \operatorname{ord}_a f = \sum_{a \in \Omega} n(\gamma, a) \operatorname{ord}_a (f + g).$$

(This result is called Rouché's Theorem.)

- (b) Show that the equation $z^4 + 26z + 2 = 0$ has exactly 3 distinct solutions in the annulus 5/2 < |z| < 3. {*Hint: count solutions in the two disks* |z| < 5/2 and |z| < 3.}
- 2. Compute the integral

$$\int_0^\infty \frac{\ln x}{x^2 - 1} \, dx,$$

using contour integration. {*Hint: you can consider a contour given by the boundary of the domain* $\{z : |z| < R, \operatorname{Im} z, \operatorname{Re} z > r\}$.}

- 3. Let $A \subset \mathbf{C}$ denote the half-disk $A = \{z : |z| < 1, \operatorname{Re} z > 0\}$, and B denote the quarter plane $B = \{z : \operatorname{Re} z, \operatorname{Im} z > 0\}$.
 - (a) Find a biholomorphism $f : A \to B$. {*Hint: consider a fractional linear transformation mapping i to 0, and -i to \infty.*}
 - (b) Find a biholomorphism $g: B \to D(0, 1)$ to the unit disk.
- 4. Suppose that $f: H \to \mathbf{C}$ is holomorphic, where H denotes the upper half plane. Suppose that f(i) = 0, and |f(z)| < 1 for all $z \in H$. How large can |f'(i)| be?