Homework 7, due 11/4

1. (a) Let $f, g: \Omega \rightarrow \mathbf{C}$ be holomorphic functions, and $\gamma:[0,1] \rightarrow \Omega \mathrm{a}$ curve contractible to a point in Ω. Suppose that for all $t \in[0,1]$ we have $|g(\gamma(t))|<|f(\gamma(t))|$. Prove that

$$
\sum_{a \in \Omega} n(\gamma, a) \operatorname{ord}_{a} f=\sum_{a \in \Omega} n(\gamma, a) \operatorname{ord}_{a}(f+g)
$$

(This result is called Rouché's Theorem.)
(b) Show that the equation $z^{4}+26 z+2=0$ has exactly 3 distinct solutions in the annulus $5 / 2<|z|<3$. \{ Hint: count solutions in the two disks $|z|<5 / 2$ and $|z|<3$.\}
2. Compute the integral

$$
\int_{0}^{\infty} \frac{\ln x}{x^{2}-1} d x
$$

using contour integration. $\{$ Hint: you can consider a contour given by the boundary of the domain $\{z:|z|<R, \operatorname{Im} z, \operatorname{Re} z>r\}$.
3. Let $A \subset \mathbf{C}$ denote the half-disk $A=\{z:|z|<1, \operatorname{Re} z>0\}$, and B denote the quarter plane $B=\{z: \operatorname{Re} z, \operatorname{Im} z>0\}$.
(a) Find a biholomorphism $f: A \rightarrow B$. \{Hint: consider a fractional linear transformation mapping i to 0 , and $-i$ to ∞.
(b) Find a biholomorphism $g: B \rightarrow D(0,1)$ to the unit disk.
4. Suppose that $f: H \rightarrow \mathbf{C}$ is holomorphic, where H denotes the upper half plane. Suppose that $f(i)=0$, and $|f(z)|<1$ for all $z \in H$. How large can $\left|f^{\prime}(i)\right|$ be?

